An improved hybrid semi-stacked autoencoder for item-features of recommendation system (iHSARS)
نویسندگان
چکیده
In recent years, information overload has become a phenomenon where it makes people difficult to filter relevant information. To address issues such as high-dimensional data, cold start, and data sparsity, semi-autoencoder is one of the unsupervised deep learning methods used in recommendation systems. It particularly useful for reducing dimensions, capturing latent representations, flexibly reconstructing various parts input data. this article, we propose an improved hybrid semi-stacked autoencoder item-features system (iHSARS) framework. This method aims show better performance collaborative via (HRSA) technique. Two novel elements iHSARS’s architecture have been introduced. The first element increase sources side layer, while second number hidden layers expanded. verify improvement model, MovieLens-100K MovieLens-1M datasets applied model. comparison between proposed model different state-of-the-art carried using mean absolute error (MAE) root square (RMSE) metrics. experiments demonstrate that our framework efficiency than others.
منابع مشابه
Hybrid Collaborative Recommendation via Semi-AutoEncoder
In this paper, we present a novel structure, Semi-AutoEncoder, based on AutoEncoder. We generalize it into a hybrid collaborative filtering model for rating prediction as well as personalized top-n recommendations. Experimental results on two real-world datasets demonstrate its state-of-the-art performances.
متن کاملRelational Stacked Denoising Autoencoder for Tag Recommendation
Tag recommendation has become one of the most important ways of organizing and indexing online resources like articles, movies, and music. Since tagging information is usually very sparse, effective learning of the content representation for these resources is crucial to accurate tag recommendation. Recently, models proposed for tag recommendation, such as collaborative topic regression and its...
متن کاملStacked Robust Autoencoder for Classification
In this work we propose an lp-norm data fidelity constraint for training the autoencoder. Usually the Euclidean distance is used for this purpose; we generalize the l2-norm to the lp-norm; smaller values of p make the problem robust to outliers. The ensuing optimization problem is solved using the Augmented Lagrangian approach. The proposed lp -norm Autoencoder has been tested on benchmark deep...
متن کاملDeep Autoencoder Based Speech Features for Improved Dysarthric Speech Recognition
Dysarthria is a motor speech disorder, resulting in mumbled, slurred or slow speech that is generally difficult to understand by both humans and machines. Traditional Automatic Speech Recognizers (ASR) perform poorly on dysarthric speech recognition tasks. In this paper, we propose the use of deep autoencoders to enhance the Mel Frequency Cepstral Coefficients (MFCC) based features in order to ...
متن کاملDeep Coevolutionary Network: Embedding User and Item Features for Recommendation
Recommender systems often use latent features to explain the behaviors of users and capture the properties of items. As users interact with different items over time, user and item features can influence each other, evolve and co-evolve over time. To accurately capture the fine grained nonlinear coevolution of these features, we propose a recurrent coevolutionary feature embedding process model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indonesian Journal of Electrical Engineering and Computer Science
سال: 2023
ISSN: ['2502-4752', '2502-4760']
DOI: https://doi.org/10.11591/ijeecs.v30.i1.pp481-490